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Introduction

☼ Coronal Mass Ejections (CMEs)

CMEs are one of the main drivers of space weather.
Forecasting which active regions in the Sun produce
them and when can help:

Better prepare our infrastructure for potential im-
pacts.
Potentially better understand the physical mecha-
nisms behind these eruptions.

Image credit: ESA/NASA SOHO/LASCO
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Introduction

� Simple CME impact pipeline
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Introduction

� Options for forecasting CMEs

e.g. Bobra and I�onidis (2016)
Liu et al. (2020)

e.g. Inceglou et al. (2018)
Abduallah et al. (2023)

Our work
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Model setup

� SHARP keywords (Bobra et al. (2018), Angryk et al. (2020))

We produce forecasts for Space weather HMI Active
Region Patches (SHARPs) between 2010 and 2018.
Track magnetic field concentrations and tend to co-
incide with NOAA active regions (not always).
Parameters describing the magnetic field are calcu-
lated every 12 minutes. These are our inputs.

CMEs matched to regions in
our previous work (find in
julhcam.com).
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Model setup

� Forecasting setup

EventObservation period
Prediction period without event (label 0)
Prediction period with event (label 1)
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Model setup

� Forecasting setup

t=-24h

· · ·

f1

f2

f3

f4

f5

t=presentTime

Transformer
ML Model
(Works with

sequential data)

Yes/No
CME/Flare
in next 24h

Input: Evolution of SHARP keywords
+ history of activity
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Model performance

� Two kinds of evaluations

Timeline
CME

NO Flare
CME

≥M Flare

Flare-CME model running (if flare model predicts flare)

CME model running

Flare model running

Independent evaluation
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Model performance

� Two kinds of evaluations

Timeline
CME

NO Flare
CME

≥M Flare

Flare-CME model running (if flare model predicts flare)

CME model running

Flare model running

Coupled evaluation and equal datasets
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Model performance

� Options for forecasting CMEs

e.g. Bobra and I�onidis (2016)
Liu et al. (2020)

e.g. Inceglou et al. (2018)
Abduallah et al. (2023)
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Model performance

� Overall performances

Table: Individual model performance

Forecast Type TSS

Flare 0.82
CME 0.52
Flare-CME 0.13

Table: Combined model performance. Evaluated on
equal datasets.

Forecast Type TSS

CME 0.00
Flare + Flare-CME 0.13
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Model performance

� Some takeaways and hypotheses
Models that forecast CMEs struggle more: perhaps not as many signatures in photo-
spheric magnetic field?
TSS inflates the performance of the models without knowledge of event distribution in
dataset (look out for submitted paper).
When evaluated in 24h prior to >M flare, flare-CME model does better than CME.

Intuitively makes sense, but both are looking for CMEs
Hint that models are looking for different signatures
Next: Can we use explainability methods to see where those two models differ?
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Work in progress: Explainability

� Integrated Gradients (IGs) (Sundararajan et al. (2017))

Attribution method: How much did each of the in-
puts contribute to the prediction?

IGi(θa,i) = (θa,i−θb,i)

∫1

0

∂F
(

θa + α (θb − θa)
)

∂θi
dα

Has nice properties like:
Completeness
Independent of model implementation
Sensitivity

∂f
∂θ1

∂f
∂θ2

∂f
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Work in progress: Explainability

� IGs in practice

�ve
�ve

Exp. decaying number of 
M flares (Liu et al. 2019)

≥
M
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CME Model

CME Model attributions

F�are-CME Model attributions

Feature

F�are-CME Model

Perfect prediction
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Work in progress: Explainability

� Current challenges
How to choose a meaningful baseline?
Is a line integral valid from a physical perspective?
How to test any explanation against what the model really does?
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Backup slides

� Event active regions

Target
Prediction

Correct prediction
Incorrect prediction

Class imbalance: 14.00
Event active ratio: 0.22

N. events: 6
Baseline TSS: 0.83

Class imbalance: 14.00
Event active ratio: 0.67

N. events: 6
Baseline TSS: 0.36

Dataset Ratio
Flare 0.05
CME 0.10
Flare-CME 0.47
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Backup slides

� Active regions TSS

0.2 0.4 0.6 0.8 1.0
Ratio of event active regions
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Backup slides

� CME predictions examples

0

0.31

1
HARPNUM: 2696 Event active

HARPNUM: 5982 Event active

HARPNUM: 5290 Non event active

Target Prediction Threshold
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Backup slides

� Distribution of predictions
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Backup slides

� Dataset splits
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