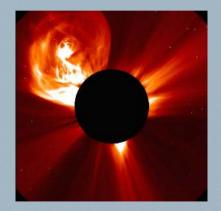


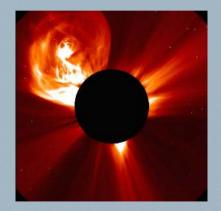
Interpreting Transformer-Based CME Forecasting and the Role of Flare Associations

Julio Hernandez Camero, Lucie M. Green

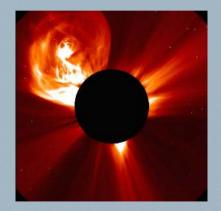

Department of Climate and Space Physics University College London

7th April 2025

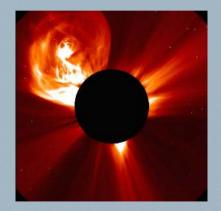
Coronal Mass Ejections (CMEs)

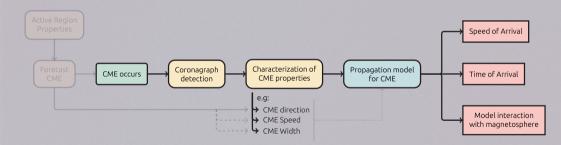

• CMEs are one of the main drivers of space weather.

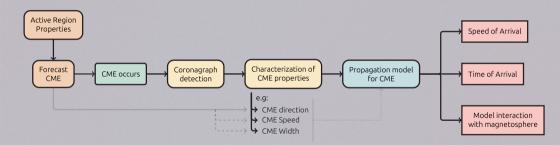
- Forecasting which active regions in the Sun produce them and when can help:
 - Better prepare our infrastructure for potential impacts.
 - Potentially better understand the physical mechanisms behind these eruptions.

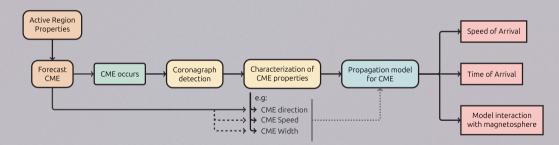

Coronal Mass Ejections (CMEs)

- CMEs are one of the main drivers of space weather.
- Forecasting which active regions in the Sun produce them and when can help:
 - Better prepare our infrastructure for potential impacts.
 - Potentially better understand the physical mechanisms behind these eruptions.

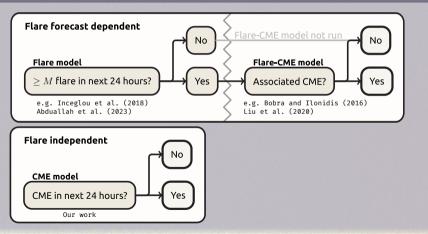

Coronal Mass Ejections (CMEs)


- CMEs are one of the main drivers of space weather.
- Forecasting which active regions in the Sun produce them and when can help:
 - Better prepare our infrastructure for potential impacts.
 - Potentially better understand the physical mechanisms behind these eruptions.




🗘 🛛 Coronal Mass Ejections (CMEs)

- CMEs are one of the main drivers of space weather.
- Forecasting which active regions in the Sun produce them and when can help:
 - Better prepare our infrastructure for potential impacts.
 - Potentially better understand the physical mechanisms behind these eruptions.



Options for forecasting CMEs

SHARP keywords (Bobra et al. (2018), Angryk et al. (2020))

- We produce forecasts for Space weather HMI Active Region Patches (SHARPs) between 2010 and 2018.
- Track magnetic field concentrations and *tend* to coincide with NOAA active regions (not always).
- Parameters describing the magnetic field are calculated every 12 minutes. These are our inputs.

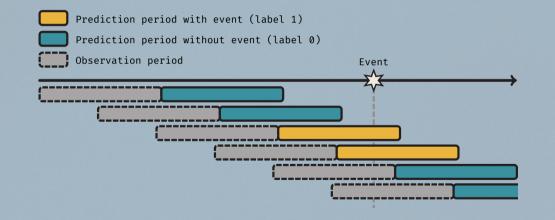
 CMEs matched to regions in our previous work (find in julhcam.com).

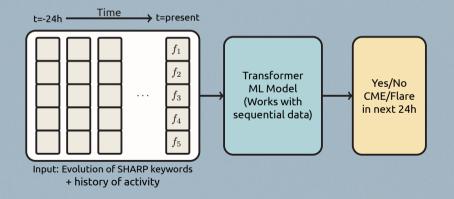
SHARP keywords (Bobra et al. (2018), Angryk et al. (2020))

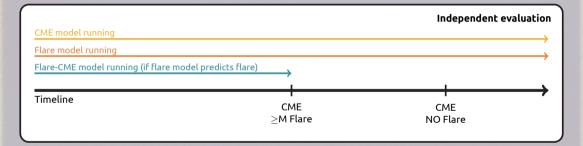
- We produce forecasts for Space weather HMI Active Region Patches (SHARPs) between 2010 and 2018.
- Track magnetic field concentrations and *tend* to coincide with NOAA active regions (not always).
- Parameters describing the magnetic field are calculated every 12 minutes. These are our inputs.

 CMEs matched to regions in our previous work (find in julhcam.com).

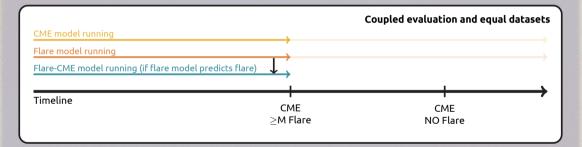
SHARP keywords (Bobra et al. (2018), Angryk et al. (2020))


- We produce forecasts for Space weather HMI Active Region Patches (SHARPs) between 2010 and 2018.
- Track magnetic field concentrations and *tend* to coincide with NOAA active regions (not always).
- Parameters describing the magnetic field are calculated every 12 minutes. These are our inputs.
- CMEs matched to regions in our previous work (find in julhcam.com).

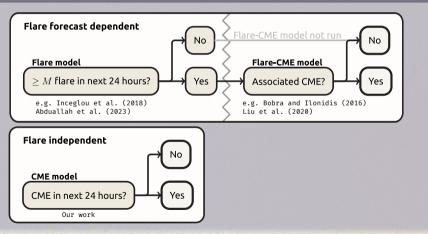

Model setup



Model setup


Forecasting setup

Two kinds of evaluations



Two kinds of evaluations

Options for forecasting CMEs

🗠 Overall performances

Table: Individual model performance

Forecast	Туре	TSS

Flare	0.82
CME	0.52
Flare-CME	0.13

Table: Combined model performance. Evaluated on equal datasets.

Forecast Type	TSS
CME	0.00
Flare + Flare-CME	0.13

Some takeaways and hypotheses

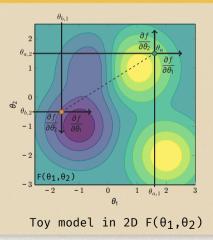
- Models that forecast CMEs struggle more: perhaps not as many signatures in photospheric magnetic field?
- TSS inflates the performance of the models without knowledge of event distribution in dataset (look out for submitted paper).
- When evaluated in 24h prior to \ge M flare, flare-CME model does better than CME.
 - Intuitively makes sense, but both are looking for CMEs
 - Hint that models are looking for different signatures
 - Next: Can we use explainability methods to see where those two models differ?

Some takeaways and hypotheses

- Models that forecast CMEs struggle more: perhaps not as many signatures in photospheric magnetic field?
- TSS inflates the performance of the models without knowledge of event distribution in dataset (look out for submitted paper).
- When evaluated in 24h prior to \ge M flare, flare-CME model does better than CME.
 - Intuitively makes sense, but both are looking for CMEs
 - Hint that models are looking for different signatures
 - Next: Can we use explainability methods to see where those two models differ?

Some takeaways and hypotheses

- Models that forecast CMEs struggle more: perhaps not as many signatures in photospheric magnetic field?
- TSS inflates the performance of the models without knowledge of event distribution in dataset (look out for submitted paper).
- When evaluated in 24h prior to \ge M flare, flare-CME model does better than CME.
 - Intuitively makes sense, but both are looking for CMEs
 - Hint that models are looking for different signatures
 - Next: Can we use explainability methods to see where those two models differ?

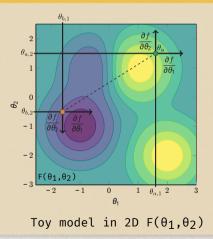

Integrated Gradients (IGs) (Sundararajan et al. (2017))

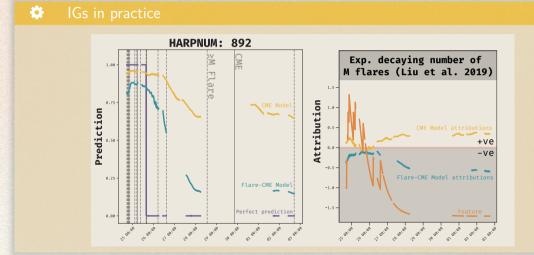
Attribution method: How much did each of the inputs contribute to the prediction?

$$\mathsf{IG}_{i}(\theta_{a,i}) = (\theta_{a,i} - \theta_{b,i}) \int_{0}^{1} \frac{\partial F(\theta_{a} + \alpha (\theta_{b} - \theta_{a}))}{\partial \theta_{i}} d\alpha$$

Has nice properties like:

- Completeness
- Independent of model implementation
- Sensitivity

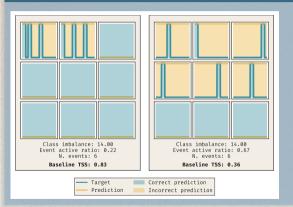

Integrated Gradients (IGs) (Sundararajan et al. (2017))


Attribution method: How much did each of the inputs contribute to the prediction?

$$\mathsf{IG}_{i}(\theta_{a,i}) = (\theta_{a,i} - \theta_{b,i}) \int_{0}^{1} \frac{\partial F(\theta_{a} + \alpha (\theta_{b} - \theta_{a}))}{\partial \theta_{i}} d\alpha$$

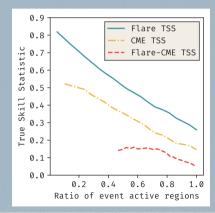
Has nice properties like:

- Completeness
- Independent of model implementation
- Sensitivity

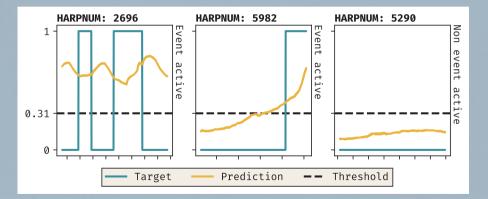

A Current challenges

- How to choose a meaningful baseline?
- Is a line integral valid from a physical perspective?
- How to test any explanation against what the model really does?

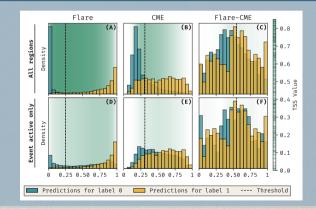
Backup slides


0

Event active regions

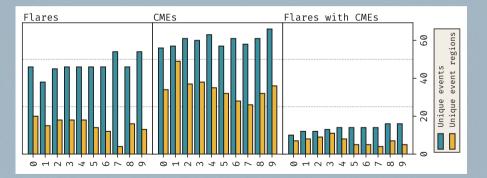

Dataset	Ratio
Flare	0.05
CME	0.10
Flare-CME	0.47

C Active regions TSS


Julio H. Camero, Lucie M. Green (UCL)

CME predictions examples

Backup slides


📽 Distribution of predictions

Julio H. Camero, Lucie M. Green (UCL)

Backup slides

Cataset splits

